Ordinary differential equations
		
		
		
		
		
		
		Перейти к навигации
		Перейти к поиску
		
		
		
		
		
		
		
	
Dear Math in Moscow students!
This page will contain information related to course Ordinary differential equations.
Instructor: Ilya Schurov (ilya{at}schurov.com).
Содержание
- 1 References
 - 2 Lessons
- 2.1 02/12: Introduction to ODEs
 - 2.2 Assignments
 - 2.3 02/19: ODEs in dimension 1
 - 2.4 Excercises
 - 2.5 02/26: ODEs in arbitrary dimension
 - 2.6 Excercises
 - 2.7 03/05: 1-forms and complete differential equations
 - 2.8 Exercises
 - 2.9 03/12: First integrals
 - 2.10 Exercises
 - 2.11 03/19: Conservative systems with one degree of freedom
 - 2.12 Exercises
 - 2.13 03/26: Midterm
 - 2.14 04/02: Rectification theorem
 - 2.15 Exercises
 - 2.16 04/09: Linear equations in dimension 1
 - 2.17 Exercises
 - 2.18 04/16: Planar linear systems
 - 2.19 Exercises
 - 2.20 04/23: Linear systems of higher dimensions and matrix exponentials
 - 2.21 Exercises
 - 2.22 04/30: Stability
 - 2.23 Exercises
 - 2.24 05/04: Total recall
 - 2.25 Exercises
 
 
References
- Main textbook is Ordinary differential equations by V. I. Arnold.
 
- Problems were taken mostly from Problems in differential equations by A. F. Filippov.
 
- The program and assignments are based in part on the following courses:
 
- Curriculum (it seems that only the first 14 items will be covered in the course due to lack of time). See also the curriculum of our 2009-10 course.
 
Lessons
02/12: Introduction to ODEs
- Examples of mathematical models that lead to differential equations: Malthusian population grows, free fall, harmonic oscillator.
 
- Examples of ODEs and their solutions:
 
- Phase space, extendended phase space, direction field, integral curves.
 
- Barrow's formula: the solution of an equation dx/dt=f(x) (autonomous equation in dimension 1).
 
Assignments
- Assignment 1 (due date: 02/19)
 
02/19: ODEs in dimension 1
- Euler's approximations.
 
- Example of nonuniqueness for the solution of differential equation: dx/dt=x2/3.
 
- Theorem of existence and uniqueness for
- autonomous differential equations in dimension 1 (with the proof);
 - non-autonomous differential equations in dimension 1 (without the proof).
 
 
- Separation of the variables (with the proof).
 
Excercises
- Problems 2 (discussed in the class)
 
- Assignment 2 (due date: 02/26)
 
02/26: ODEs in arbitrary dimension
- Multidimensional phase space.
 
- Some facts about curves and vector-functions.
 
- Autonomous multidimensional ODEs.
- Vector field.
 - Phase curve.
 
 
- The relation between phase curves of autonomous ODE and integral curves of corresponding non-autonomous ODE.
 
Excercises
- Problems 3 (discussed in the class)
 
- Assignment 3 (due date: 03/05)
 
03/05: 1-forms and complete differential equations
- Cartesian products of differential equations and separating variables.
 
- From nonautonomous equation to autonomous system.
 
- From higher-order ODE to a system of 1-st order ODEs.
 
- The notion of differential 1-form (covector field).
 
- Direction field defined by 1-form.
 
- The relation between 1-forms and differential equations.
 
- Reminder: differential of a function of several variables as 1-form.
 
- Complete differential equation.
 
- The criterion of completeness.
 
Exercises
- Problems 4 (discussed in the class)
 
- Assignment 4 (due date: 03/12)
 
03/12: First integrals
- The notion of first integral.
 
- Lie derivative along vector field.
 
- Global first integrals.
 
Exercises
- Problems 5 (discussed in the class)
 
- Assignment 5 (due date: 03/19)
 
03/19: Conservative systems with one degree of freedom
- Hamilton's equation.
 
- Newton's equation.
- Examples: oscillator, linearized inverse pendulum, mathematical pendulum.
 
 
- Kinetic and potential energy.
 
- Phase portrait of Newton's equation.
 
- Stable and unstable equilibria.
 
Exercises
- Problems 6 (discussed in the class)
 
03/26: Midterm
04/02: Rectification theorem
- Change of variables.
 
- Rectification of the vector field near nonsingular point on the plane.
 
- Normalization of the vector field on line.
 
- Polar coordinates.
 
Exercises
- Problems 7 (discussed in the class)
 
- Assignment 6 (due date 04/09)
 
04/09: Linear equations in dimension 1
- Linear equations of first order with variable coefficients.
 
- Method of variation of constants.
 
- Linear equations with fixed coefficients and quasipolynomial righthand-side.
- Method of undetermined coefficients.
 - Resonances.
 
 
Exercises
- Problems 8 (discussed in the class)
 
- Assignment 7 (due date 04/16)
 
04/16: Planar linear systems
- Linear transformations of linear systems of ODE with fixed coefficients.
 
- Example: dx/dt=x+y, dy/dt=x-y.
 
- General solution of linear system with diagonalizable matrix.
 
- The relation between complex linear equation in dimension 1 and real system in dimension two with complex conjugated eigenvalues.
 
- Classification of linear singular points on the plane:
- Saddle
 - Node
 - Degenerate node
 - Dicritic node
 - Center
 - Focus
 
 
- Stability of node and focus.
 
Exercises
- Problems 9 (discussed in the class)
 
- Assignment 8 (due date 04/23)
 
04/23: Linear systems of higher dimensions and matrix exponentials
- Phase flow of linear system is linear map
- Corollary: the dimension of the space of all solutions of linear system is equal to the dimension of the phase space.
 
 
- Matrix exponential: series expansion
 
- The solution of linear system as matrix exponential.
 
- How to calculate matrix exponential: diagonalizable and Jordan cases.
 
Exercises
- Problems 10 (discussed in the class)
 
04/30: Stability
- Stable and unstable equilibria examples: one-dimensional equations, linear systems and conservative systems with one degree of freedom.
 
- The definition of Lyapunov stability.
 
- The definition of asymptotic stability.
- Why we have to demand Lyapunov stability in the definition of asymptotic stability?
 
 
Exercises
- Problems 11 (discussed in the class)
 
- Assignment 9 (due date 05/07).
 
05/04: Total recall
Exercises
- Problems 12 (discussed in the class)