Основы работы с количественными данными: различия между версиями

Материал из MathINFO
Перейти к навигации Перейти к поиску
Строка 16: Строка 16:
  
 
Для работы в Jupyter Notebook на своем компьютере, а не в облачной среде, удобнее всего установить дистрибутив '''Anaconda''' (скачать можно [https://www.anaconda.com/download здесь]), который включает в себя интерпретатор языка Python, библиотеки для обработки, анализа и визуализации данных, а также саму среду Jupyter Notebook.
 
Для работы в Jupyter Notebook на своем компьютере, а не в облачной среде, удобнее всего установить дистрибутив '''Anaconda''' (скачать можно [https://www.anaconda.com/download здесь]), который включает в себя интерпретатор языка Python, библиотеки для обработки, анализа и визуализации данных, а также саму среду Jupyter Notebook.
 +
 +
'''Установка Anaconda и работа в Jupyter Notebook и Google Colab'''
 +
 +
* Материалы [https://edu.hse.ru/course/view.php?id=133389 онлайн-курса] (доступен всем в SmartLMS): [https://edu.hse.ru/mod/page/view.php?id=502433 подготовка рабочего места], [https://edu.hse.ru/mod/page/view.php?id=502434 инструкция по открытию файлов в Jupyter].
 +
* Запуск Jupyter без Anaconda Navigator ([https://disk.yandex.ru/i/w6yPaRbPcm8yyg инструкция]).
 +
* Работа в Jupyter Notebook ([https://disk.yandex.ru/i/2NYAqowJjmS2SA видео]), отличия Google Colab от Jupyter ([https://disk.yandex.ru/i/cGbacX28YtR08g видео]).
 +
 +
Дополнительно для желающих:
 +
 +
* Набор текста в Jupyter Notebook ([https://disk.yandex.ru/i/bNqLGRjrq_UEjg видео], [https://disk.yandex.ru/d/C1E7Axa0jr4nwQ ipynb]), [https://gist.github.com/Jekins/2bf2d0638163f1294637 больше] о Markdown.
  
 
== Материалы ==
 
== Материалы ==

Версия 23:30, 11 сентября 2024

Дорогие студенты!

Это страница обязательного курса «Основы работы с количественными данными», читаемого на программе
«Коммуникации в государственных структурах и НКО» 1 курса магистратуры в 1 модуле 2024-2025 учебного года.

Занятия ведёт: Тамбовцева Алла Андреевна.

Правила игры

  • Формула оценки: Итог = 0.48 * ДЗ + 0.2 * Проверочные работы + 0.32 * Экзамен.
  • Программа курса, организационная презентация.
  • Домашние задания, сданные позже дедлайна, оцениваются со штрафом:
    в пределах часа – 10% от оценки, суток – 30%, недели – 60%.

Программное обеспечение

На этом курсе для практической работы с данными мы используем язык Python и среду Jupyter Notebook (или ее облачный аналог Google Colab). Для создания и редактирования файлов в Google Colab ничего устанавливать не нужно, но нужно иметь аккаунт Google (Gmail).

Для работы в Jupyter Notebook на своем компьютере, а не в облачной среде, удобнее всего установить дистрибутив Anaconda (скачать можно здесь), который включает в себя интерпретатор языка Python, библиотеки для обработки, анализа и визуализации данных, а также саму среду Jupyter Notebook.

Установка Anaconda и работа в Jupyter Notebook и Google Colab

Дополнительно для желающих:

Материалы

Неделя 1. Шкалы данных. Введение в Python

  • Шкалы данных (слайды). Введение в Python (ipynb).
  • Практикум 1: переменные и проверка условий (ipynb), решения (ipynb).

Дополнительно (для желающих узнать больше о Python):

  • Вычисления, переменные, типы данных в Python (ipynb).
  • Ввод и вывод, форматирование строк (ipynb). Условные конструкции (ipynb).
  • Документация библиотеки sympy для решения уравнений и др.