Анализ данных на Python: различия между версиями

Материал из MathINFO
Перейти к навигации Перейти к поиску
Строка 35: Строка 35:
  
 
* Markdown: [https://gist.github.com/Jekins/2bf2d0638163f1294637 больше] про Markdown, знакомство с Jupyter Notebook и Markdown ([https://nbviewer.jupyter.org/github/allatambov/allatambov.github.io/blob/master/icef/seminars/intro-jupyter.ipynb читать], [http://allatambov.github.io/icef/seminars/intro-jupyter.ipynb ipynb]).
 
* Markdown: [https://gist.github.com/Jekins/2bf2d0638163f1294637 больше] про Markdown, знакомство с Jupyter Notebook и Markdown ([https://nbviewer.jupyter.org/github/allatambov/allatambov.github.io/blob/master/icef/seminars/intro-jupyter.ipynb читать], [http://allatambov.github.io/icef/seminars/intro-jupyter.ipynb ipynb]).
 
<!---
 
  
 
=== Неделя 1. Шкалы данных. Индексируемые структуры данных ===
 
=== Неделя 1. Шкалы данных. Индексируемые структуры данных ===
  
* Шкалы данных (слайды).
+
* Шкалы данных ([https://disk.yandex.ru/i/H3K0M3bNHAjgjQ слайды]).
* Индексируемые структуры данных (ipynb).
+
* Индексируемые структуры данных ([ipynb]).
 
* [https://pythontutor.com/render.html#mode=display Визуализатор] кода от Pythontutor.
 
* [https://pythontutor.com/render.html#mode=display Визуализатор] кода от Pythontutor.
  
=== Самостоятельное изучение ===
+
=== Самостоятельное изучение 1 ===
  
 
* Описательные статистики ([слайды]).
 
* Описательные статистики ([слайды]).
*  
+
* Цикл for и его аналоги ([ipynb]).
 
 
--->
 

Версия 12:53, 5 апреля 2025

Дорогие студенты!

Это страница обязательного курса «Анализ данных на Python», читаемого на программе «Разработка информационных систем для бизнеса»
2 курса бакалавриата в 4 модуле 2024-2025 учебного года.

Занятия ведут: Николаев Ян Андреевич, Тамбовцева Алла Андреевна.

Правила игры

Формула оценки: 0.6 × ДЗ + 0.15 × Активность + 0.25 × Тест.

Пояснения:

  • ДЗ: мини-проекты, посвященные анализу и визуализации данных, а также сбору и обработке данных.
  • Активность: участие в квизах, опросах и групповых заданиях на семинарах.
  • Тест: итоговый тест с закрытыми и открытыми вопросами по обработке, визуализации и анализу данных.
  • Домашние задания, сданные после срока, оцениваются с использованием понижающих коэффициентов:
    опоздание в пределах часа – штраф 10% от оценки, в пределах суток – штраф 30%.
    Домашние задания, сданные позже, не принимаются и не оцениваются.

Среда для работы

Писать код Python на занятиях и рамках домашних заданий можно в любой среде (PyCharm, Jupyter Notebook, VS и другие).
На занятиях мы будем демонстрировать работу в Jupyter Notebook и PyCharm. Конспекты занятий с кодом будут опубликованы в виде ipynb-файлов на Github. Читать их можно онлайн, открывать с возможностью редактировать – преимущественно через Jupyter Notebook (в PyCharm их поддерживает только платная версия Professional).

  • Если вы планируете работать в Jupyter Notebook, проще всего установить дистрибутив Anaconda (скачать можно здесь), который включает в себя интерпретатор языка Python, библиотеки для обработки, анализа и визуализации данных, а также среду разработки Jupyter Notebook. Также есть возможность работать в Jupyter Notebook онлайн, используя ресурс Google Colab (для создания и редактирования файлов нужен аккаунт Gmail). Подробности по работе – см. ниже в неделе 0.
  • Если вы планируете работать в PyCharm, эту среду можно скачать по ссылке, бесплатная версия Community.

Материалы курса

Неделя 0. Про Python и Jupyter Notebook

Дополнительно:

Неделя 1. Шкалы данных. Индексируемые структуры данных

Самостоятельное изучение 1

  • Описательные статистики ([слайды]).
  • Цикл for и его аналоги ([ipynb]).