Основы анализа данных в Python: различия между версиями

Материал из MathINFO
Перейти к навигации Перейти к поиску
Строка 29: Строка 29:
 
* Набор текста в Jupyter Notebook ([https://disk.yandex.ru/i/bNqLGRjrq_UEjg видео], [https://disk.yandex.ru/d/C1E7Axa0jr4nwQ ipynb]), [https://gist.github.com/Jekins/2bf2d0638163f1294637 больше] о Markdown.
 
* Набор текста в Jupyter Notebook ([https://disk.yandex.ru/i/bNqLGRjrq_UEjg видео], [https://disk.yandex.ru/d/C1E7Axa0jr4nwQ ipynb]), [https://gist.github.com/Jekins/2bf2d0638163f1294637 больше] о Markdown.
 
* LaTeX: [https://www.overleaf.com/ Overleaf], [https://www.overleaf.com/learn документация], [https://github.com/allatambov/Latex материалы] по LaTeX.
 
* LaTeX: [https://www.overleaf.com/ Overleaf], [https://www.overleaf.com/learn документация], [https://github.com/allatambov/Latex материалы] по LaTeX.
 +
 +
== Материалы курса ==
 +
 +
=== Неделя 1. Шкалы данных. Описание данных. ===
 +
 +
* Шкалы данных. Описательные статистики.
 +
* Практикум 1. Массивы NumPy (w01-practice.ipynb).

Версия 22:53, 4 ноября 2024

Дорогие студенты!

Это страница курса «Основы анализа данных в Python», читаемого во 2 модуле 2024-2025 учебного года на ОП «Политология».

Преподаватель: Тамбовцева Алла Андреевна.

Правила игры

  • Программа курса, организационная [презентация].
  • Формула оценки: 0.25 * Тесты + 0.25 * Практикум + 0.5 * Экзамен.
  • Цель курса – подготовка к независимому экзамену по анализу данных. Демоверсию экзамена и тренировочные варианты можно
    найти здесь в разделе Материалы для подготовкиАнализ данных. Базовый уровень (запись на курс в SmartLMS).
  • Курс включает темы, пройденные ранее в рамках обязательных курсов по ТВиМС и регрессионному анализу, поэтому теоретический материал
    изучается (=повторяется) самостоятельно по предложенным материалам и в рамках онлайн-курса «Сбор и анализ данных в Python».

Программное обеспечение

В рамках этого курса мы будем использовать язык Python и среду разработки Jupyter Notebook. Также есть возможность работать в аналоге Jupyter Notebook онлайн, используя ресурс Google Colab (для создания и редактирования файлов нужен аккаунт Gmail).

NB. На независимом экзамене не разрешается использовать облачные ресурсы, включая Google Colab.

Если у вас ничего не установлено или вы успели «удалить весь Python», перед занятиями необходимо установить дистрибутив Anaconda (скачать можно здесь, регистрацию можно пропустить), который включает в себя интерпретатор языка Python, библиотеки для обработки, анализа и визуализации данных, а также среду для работы Jupyter Notebook.

Материалы по работе в Jupyter Notebook и Google Colab:

Дополнительно для желающих:

Материалы курса

Неделя 1. Шкалы данных. Описание данных.

  • Шкалы данных. Описательные статистики.
  • Практикум 1. Массивы NumPy (w01-practice.ipynb).