Теория вероятностей и математическая статистика: различия между версиями
Перейти к навигации
Перейти к поиску
Строка 62: | Строка 62: | ||
| | | | ||
| | | | ||
− | | | + | |- |
|06.04 | |06.04 | ||
|Математическая статистика: выборка, ее характеристики. | |Математическая статистика: выборка, ее характеристики. | ||
|06.04 | |06.04 | ||
|[http://math-hse.info/a/2019-20/ling-prob/9_sample-quantile-mean.pdf Выборки. Квантили и среднее.] | |[http://math-hse.info/a/2019-20/ling-prob/9_sample-quantile-mean.pdf Выборки. Квантили и среднее.] | ||
− | |- | + | |<!-- - |
|13.04 | |13.04 | ||
|Точечные оценки и их свойства. | |Точечные оценки и их свойства. |
Версия 23:26, 3 апреля 2020
Дорогие студенты!
На этой странице будут появляться различные материалы и объявления, связанные с курсом «Теория вероятностей и математическая статистика», читаемого для студентов 2-го курса школы лингвистики в 2019/2020 учебном году.
- Авторы курса: И.В. Щуров, Д.А. Филимонов.
- Лекции читает: Филимонов Дмитрий Андреевич.
- Семинары ведет: Филимонов Дмитрий Андреевич.
Таблицы распределений
Таблицы распределений: нормальное, хи-квадрат и Стьюдент. Исходники (открываются не всеми версиями всех программ, созданы в Libre Office 6.0.2.1)
Материалы
Лекции и семинары
дата лекции | тема лекции | дата семинара | задачи к семинару |
---|---|---|---|
13.01 | Основные понятия теории вероятностей. | 13.01/14.01 | Задачи на основные понятия классической теории вероятностей |
20.01 | Формулы полной вероятности и Байеса. Случайная величина. Дискретные случайные величины. | 20.01/21.01 | Задачи на формулу полной вероятности и формулу Байеса |
27.01 | Арифметические операции над случайными величинами. Математическое ожидание и дисперсия. | 27.01/28.01 | Дискретная случайная величина |
03.02 | Зоопарк дискретных распределений. | 03.02/04.02 | Задачи на различные дискретные случайные величины. |
10.02 | Системы дискретных случайных величин. | 10.02/11.02 | Задачи на системы дискретных случайных величин. |
17.02 | Непрерывная случайная величина. Функция распределения. Действия со случайными величинами. Математическое ожидание и дисперсия. | 17.02/18.02 | Непрерывная случайная величина. |
02.03 | Зоопарк непрерывных распределений: Показательное, Нормальное и Парето. | 02.03/03.03 | Непрерывная случайная величина. Математическое ожидание и дисперсия. |
16.03 | Неравенство Чебышёва. Закон больших чисел, центральная предельная теорема и теорема Муавра-Лапласа. | 16.03/17.03 | Нормальное распределение, действия с непрерывными случайными величинами и теорема Муавра-Лапласа. |
??.03 | Контрольная | ||
06.04 | Математическая статистика: выборка, ее характеристики. | 06.04 | Выборки. Квантили и среднее. |
Литература
С базовой теорией вероятностей можно знакомиться по учебнику [1]. На более глубоком уровне существует много учебников по вероятности и статистике. Например, можно читать [2]. Из учебников, доступных в электронном виде, отметим очень неплохую книгу [3] (на английском), см. главу 2.
- Тюрин Ю. Н., Макаров А. А., Симонова Г. И. Теория вероятностей. Учебник для экономических и гуманитарных специальностей. М.: МЦНМО, 2009.
- Кремер. Н. Ш. Теория вероятностей и математическая статистика. М.: Юнити-Дана, 2010.
- David M Diez, Christopher D Barr, Mine Cetinkaya-Rundel. OpenIntro Statistics Second Edition.
- David H. Freedman, Robert Pisani, Roger Purves. Statistics.