Совместный бакалавриат НИУ ВШЭ и ЦПМ, 2020-21 уч. год Алгебра

Семинар 10. Конечные поля. (13 ноября 2020 года)

Задача 1. (а) Пусть F — поле характеристики p. Пусть $q=p^r, r\in \mathbb{N}$, докажите, что $(a+b)^q=a^q+b^q \ \forall a,b\in F$.

(б) Пусть K — множество корней уравнения $x^q - x$ в F. Докажите, что K является подполем в F.

Задача 2. (а) Разложите $x^8 - x$ в произведение неприводимых многочленов в $\mathbb{F}_2[x]$. (б) Постройте поле из 8 элементов и покажите, что каждый его элемент является корнем многочлена $x^8 - x$. Явно укажите для каждого элемента, корнем какого неприводимого многочлена из разложения пункта (а) он является.

Задача 3. (а) Сколько неприводимых многочленов степени 2 в $\mathbb{F}_p[x]$?

- (б) Пусть f(x) неприводимый многочлен степени 2 в $\mathbb{F}_p[x]$. Покажите, что $K = \mathbb{F}_p[x]/(f)$ является полем из p^2 элементов, где каждый элемент представим в виде $a+b\alpha$, где α корень многочлена f(x) в K, а $a,b\in\mathbb{F}_p$.
- (в) Покажите, что элемент $a+b\alpha \in K$, где $b\neq 0$, является корнем неприводимого многочлена степени 2 в $\mathbb{F}_p[x]$.
- (г) Докажите, что любой неприводимый многочленов степени 2 в $\mathbb{F}_p[x]$ имеет корень в K.

Задача 4. (а) Докажите, что многочлены $f(x) = x^3 + x + 1$ и $g(x) = x^3 + x^2 + 1$ неприводимы в $\mathbb{F}_2[x]$.

(б) Пусть K — расширение поля $\mathbb{F}_2[x]$, полученное присоединение корня многочлена f(x), а L — расширение поля $\mathbb{F}_2[x]$, полученное присоединение корня многочлена g(x). Постройте явно изморфизм между K и L.

Задача 5. (а) Покажите, что

$$x^{16} - x = x(x-1)(x^2 + x + 1)(x^4 + x^3 + x^2 + x + 1)(x^4 + x^3 + 1)(x^4 + x + 1)$$

является разложением на неприводимые многочлены в $\mathbb{F}_2[x]$.

(б*) Разложите многочлен $x^{16}-x$ на неприводимые над полем \mathbb{F}_4 , пользуясь предыдущим пунктом.