Совместный бакалавриат ВШЭ-РЭШ, 2019—20 уч. год Линейная алгебра

Домашнее задание №7

И. Щуров, М. Матушко, И. Машанова, И. Эрлих

Фамилия и имя студента: Ильин Михаил Дмитриевич

Правила

Academic ethics policy. Попытка сдать хотя бы частично списанный текст будет рассматриваться как грубое нарушение принципов академической этики со всеми административными и репутационными последствиями.

Deadline policy. Срок сдачи работы указан в my.NES и не будет переноситься. В случае сдачи работы после срока оценка умножается на e^{-t} , где t — число дней, прошедших с дедлайна (вещественное число, не округляется).

Typography policy. Текст работы сдаётся исключительно в формате PDF. Работа с идеальным оформлением, набранная на компьютере, выглядящая как страница из хорошо свёрстанной книги, получает бонус в 5% от числа набранных баллов. Работа с плохим оформлением (например, скан работы, написанной от руки), получает штраф в 5% от числа набранных баллов. Работа, чтение которой вызывает существенные затруднения (неразборчивый скан или фотография и т.д.), может быть возвращена на доработку без продления дедлайна.

Задачи

Задача 1. Найти все собственные значения и собственные векторы линейного оператора, заданного матрицей A. Найти, если это возможно, такую невырожденную матрицу C, что $A = CDC^{-1}$, где D — диагональная матрица (все внедиагональные элементы равны нулю). Если невозможно, докажите это. Собственные значения, собственные векторы и матрица D могут быть комплексными.

а.
$$A = \begin{pmatrix} 3 & 1 \\ -1 & 5 \end{pmatrix}$$
.

b. $A = \begin{pmatrix} 10 & 10 \\ -4 & -2 \end{pmatrix}$.

c. $A = \begin{pmatrix} -3 & 1 & -2 & 1 \\ 0 & 3 & -1 & -3 \\ 0 & 0 & 4 & -1 \\ 0 & 0 & 0 & 1 \end{pmatrix}$.

d. $A = \begin{pmatrix} 13 & 30 \\ -4 & -9 \end{pmatrix}$.

e. $A = \begin{pmatrix} -2 & 0 & 0 \\ -18 & 4 & -3 \\ -16 & 4 & -3 \end{pmatrix}$.

Подсказка. Чтобы найти корни многочлена третьей степени, можно угадать один из них (если он целый, то обязан быть делителем свободного члена), а потом разделить исходный многочлен на $x-x_0$ (где x_0 — угаданный корень) и решить получившееся квадратное уравнение.

Задача 2. Рассмотрим последовательность $\{x_k\}$, заданную следующим образом:

$$x_1 = 4$$
, $x_2 = -3$, $x_{k+1} = 6x_k - 8x_{k-1}$, $k = 2, 3, \dots$

а. Найти такую матрицу A, что для всех $k=2,3,\ldots$

$$\begin{pmatrix} x_{k+1} \\ x_k \end{pmatrix} = A \begin{pmatrix} x_k \\ x_{k-1} \end{pmatrix}.$$

- b. Найти такую невырожденную матрицу C, что $A = CDC^{-1}$, где D диагональная матрица.
- с. Найти явную формулу для A^n для произвольного натурального n. Формула должна допускать вычисление матрицы A^n с помощью конечного числа арифметических операций (сложение, умножение, деление, возведение в натуральную степень, извлечение квадратного корня), не зависящего от n. (Подсказка: использовать результат предыдущего пункта.)
- d. Найти явную формулу для x_n для произвольного натурального n.

Задача 3. Рассмотрим линейное пространство всех многочленов от переменной x. На нём действует оператор F, заданный следующим образом: для любого многочлена f, (Ff)(x) = xf'(x). Найти все собственные значения и собственные векторы этого оператора.

(Заметим, что рассматриваемое пространство бесконечномерно, поэтому в нём нельзя задать конечный базис, а оператор F нельзя задать (конечной) матрицей.)

Задача 4. Рассмотрим оператор R_{α} , действующий на плоскости и поворачивающий плоскость на угол $\alpha = \frac{5\pi}{6}$ против часовой стрелки.

- а. Записать его матрицу в стандартном базисе.
- b. Найти собственные значения этой матрицы. Обозначим их через λ_1 и λ_2 .
- с. Найти модуль и аргумент λ_1 и λ_2 как комплексных чисел.
- d. Пусть z произвольное комплексное число. Что происходит с z (геометрически) при умножении на λ_1 ? На λ_2 ? (Мы как обычно отождествляем комплексное число с вектором на плоскости, начало которого находится в нуле, а конец в точке, абсцисса которой равна вещественной части z, а ордината мнимой.)