library(tidyverse)
## ── Attaching packages ─────────────────────────────────── tidyverse 1.2.1 ──
## ✔ ggplot2 3.1.1 ✔ purrr 0.3.2
## ✔ tibble 2.1.1 ✔ dplyr 0.8.0.1
## ✔ tidyr 0.8.3 ✔ stringr 1.4.0
## ✔ readr 1.3.1 ✔ forcats 0.4.0
## ── Conflicts ────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag() masks stats::lag()
dat <- read_csv("https://bit.ly/2sqZ1k5")
## Parsed with column specification:
## cols(
## id = col_double(),
## gender = col_character(),
## race = col_character(),
## ses = col_character(),
## schtyp = col_character(),
## prog = col_character(),
## read = col_double(),
## write = col_double(),
## math = col_double(),
## science = col_double(),
## socst = col_double()
## )
dat
dat %>% ggplot(aes(x=read, y=write)) + geom_point()

ggplot(dat, aes(x=read, y=write)) + geom_point(color='steelblue') + geom_smooth(method='lm')

dat %>% ggplot(aes(x=read, y=write, shape=gender)) + geom_point()

ggplot(dat, aes(x=read, y=write, color=ses)) + geom_point(aes(shape=gender)) + geom_smooth(method='lm', se = FALSE) + facet_wrap(~ schtyp, nrow=3)

dat %>% ggplot(aes(x=read, y=..density..)) + geom_histogram(binwidth = 10) + geom_density()

dat %>% ggplot(aes(x=read, y=..density..)) + geom_density(aes(color=gender, fill=gender), alpha=0.3)

dat %>%
gather(course, grade, read:socst) %>%
group_by(course) %>%
summarise(mean_grade=mean(grade),
sd_grade = sd(grade),
y_min=mean_grade-1.96*sd_grade/sqrt(n()),
y_max=mean_grade+1.96*sd_grade/sqrt(n())) %>% ggplot(aes(x=course, y=mean_grade, ymin=y_min, ymax=y_max)) + geom_point() + geom_errorbar()

dat %>%
gather(course, grade, read:socst) %>%
group_by(course) %>%
summarise(mean_grade=mean(grade),
sd_grade = sd(grade),
y_min=mean_grade-1.96*sd_grade/sqrt(n()),
y_max=mean_grade+1.96*sd_grade/sqrt(n())) %>% ggplot(aes(x=course, y=mean_grade, ymin=y_min, ymax=y_max)) + geom_bar(stat='identity') + geom_errorbar()

dat %>% ggplot(aes(x=read, y=write, color=ses)) + geom_point() + scale_color_manual(values= c(high="purple", middle="green", low="steelblue"))

install.packages("ggcorrplot")
## Installing package into '/home/rstudio-user/R/x86_64-pc-linux-gnu-library/3.5'
## (as 'lib' is unspecified)
dat %>% select(read:socst) %>% cor %>% ggcorrplot::ggcorrplot(type='lower', method='circle')
