Школа лингвистики, 2023-24 уч. год Линейная алгебра и математический анализ Предел последовательности (19.09.2023)

Д. А. Филимонов

Некоторые задачи основаны на книге James Stewart, Calculus Early Transcendentals, 6e.

Задача 1. Используя калькулятор, угадайте, чему равен предел:

(a)
$$\lim_{n \to \infty} \frac{n+10}{n}$$
;
(b) $\lim_{n \to \infty} \frac{2n+1}{n^2+1}$;
(c) $\lim_{n \to \infty} \frac{3n^2+1}{n+2}$

(b)
$$\lim_{n \to \infty} \frac{2n+1}{n^2+1}$$

(c)
$$\lim_{n \to \infty} \frac{3n^2 + 1}{n + 2}$$

Задача 2. Найти следующие пределы, если они существуют:

(a)
$$\lim_{n\to\infty} \frac{n+10}{n}$$

(a)
$$\lim_{n \to \infty} \frac{n+10}{n};$$
(b)
$$\lim_{n \to \infty} \frac{2n+1}{n^2+1};$$

(c)
$$\lim_{n \to \infty} \frac{3n^2 + 1}{n + 2}$$
;

(c)
$$\lim_{n \to \infty} \frac{n^2 + 1}{n + 2}$$
;
(d) $\lim_{n \to \infty} \frac{3n^2 + 1}{n + 2}$;
(e) $\lim_{n \to \infty} \frac{5n^2 - 100n + 10000}{n^2 + n - 10}$;
(e) $\lim_{n \to \infty} \frac{3n^2 - 2n + 1}{n^3 - 4n^2 + 2}$;
(f) $\lim_{n \to \infty} \frac{5n^2 - 7}{-2n + 3}$;

(e)
$$\lim_{n\to\infty} \frac{3n^2 - 2n + 1}{n^3 - 4n^2 + 2}$$

(f)
$$\lim_{n \to \infty} \frac{5n^2 - 7}{-2n + 3}$$
;

(g)
$$\lim_{n \to \infty} \frac{-2n+3}{-3n^2-4n+6}$$
;
(h) $\lim_{n \to \infty} \frac{n+2\sqrt{n}+1}{2n-\sqrt{n}+2}$;

(h)
$$\lim_{n \to \infty} \frac{n + 2\sqrt{n+1}}{2n - \sqrt{n+2}}$$
;

(i)
$$\lim_{n \to \infty} \frac{n\sqrt{n} - 5\sqrt{n} + 2}{2n - n\sqrt{n} + 3}$$

(j)
$$\lim_{n \to \infty} \frac{10n^2}{2^n};$$

(k)
$$\lim_{n \to \infty} \left(n - \frac{n^2}{n+1} \right)$$
;

(l)
$$\lim_{n\to\infty} \left(\sqrt{n+1} - \sqrt{n}\right)$$

(m)
$$\lim_{n \to \infty} \left(\sqrt{n^2 + 1} - n \right);$$

(l)
$$\lim_{n \to \infty} \left(\sqrt{n+1} - \sqrt{n} \right);$$

(m) $\lim_{n \to \infty} \left(\sqrt{n^2 + 1} - n \right);$
(n) $\lim_{n \to \infty} \left(\sqrt{n^2 + n + 1} - n \right);$

(o)
$$\lim_{n \to \infty} (\ln(n+1) - \ln(n));$$

(n) $\lim_{n \to \infty} \frac{\ln n}{n}.$

(p)
$$\lim_{n \to \infty} \frac{\ln n}{\lg n}$$
; $\sin n$

(q)
$$\lim_{n \to \infty} \frac{\sin n}{n}$$
.

Дополнительные задачи

Задача 3. Найти следующие пределы, если они существуют:

(a)
$$\lim_{n \to \infty} \frac{\sqrt[3]{n^3 + 2n - 1}}{\frac{n + 2}{n + 1}};$$

(b) $\lim_{n \to \infty} \frac{\sqrt[3]{n^2 + n}}{\frac{n + 1}{n + 1}};$
(c) $\lim_{n \to \infty} \frac{\left(\sqrt{n^2 + 1} + n\right)^2}{\sqrt[3]{n^6 + 1}}$

Задача 4. Вычислить выражение $\sqrt{2+\sqrt{2+\sqrt{2+\dots}}}$

Задача 5. Найти радиус окружности, вписанной в параболу $y=x^2$ и касающейся её вершины.

Д. А. Филимонов