Совместный бакалавриат ВШЭ-РЭШ, 2021-22 уч. год

Математический анализ 1 (http://math-info.hse.ru/s21/3)

Дополнительное домашнее задание «Фракталы» (23 декабря 2021 г.) И. Щуров, В. Болбачан, М. Бекетов, А. Трофимова, И. Эрлих

Автор листка: Мария Матушко

Решения задач сначала нужно полностью записать, а затем уже сдавать устно. Все задачи, кроме отмеченных звездочкой * (их можно пропускать и сдавать в любом порядке), нужно сдавать по порядку. Удачи!

Определение 1. Множество Кантора строится следующим образом: $C_0 = [0, 1]$, а для построения C_{n+1} нужно каждый из отрезков, входящих в C_n , разбить на три равные части и выбросить интервал, составлющий среднюю треть. Например,

$$C_2 = \left[0, \frac{1}{9}\right] \cup \left[\frac{2}{9}, \frac{1}{3}\right] \cup \left[\frac{2}{3}, \frac{7}{9}\right] \cup \left[\frac{8}{9}, 1\right]$$

Тогда множество Кантора $C = \bigcap_{n=0}^{\infty} C_n$.

Задача 1. Пусть G_n — это объединение тех интервалов, которые мы выкидывем на n-ом шаге при построение множества Кантора, то есть $C_{n+1} = C_n \setminus G_{n+1}$.

- (a) (0,25) Выпишите выражения для G_1, G_2 и G_3 .
- (b) (0,25) Покажите, что G_n это объединение 2^{n-1} непересекающихся интервалов.
- (c) (0,25) Назовем длиной (иногда говорят мерой) G_n сумму длин интервалов из прошлого пункта. Чему равна длина G_4 ?
- (d) (0,25) Обозначим $G = \bigcup_{n=1}^{\infty} G_n$. Покажите, что $C = [0,1] \setminus G$.
- (e) (1) Покажите, что мера G равна 1. Тем самым мера Канторова множества равна нулю.

Задача 2. (1) Докажите, что C — нигде не плотное множество в [0,1], то есть в любой окрестности U(x) любой точки $x \in C$ из Канторова множества существует такой интервал I, что $I \cap C = \emptyset$.

Задача 3. Представим число $x \in [0,1]$ в троичной записи с помощью символов 0,1,2. Например, число $\frac{1}{9} = 0,01_3$.

- (a) (0,25) Представьте в троичной записи число $\frac{8}{27}$.
- (b) (0,25) Изобразите множество чисел из отрезка [0,1], в троичной записи которых на втором месте после запятой стоит 1.
- (c) (0,5) Каким свойством обладает троичная запись чисел из G_n ?
- (d) (1) Выясните как по троичной записи числа $x \in [0,1]$ установить, лежит ли x в C. (Подсказка: удобно не запрещать записи с «хвостом» двоек.)

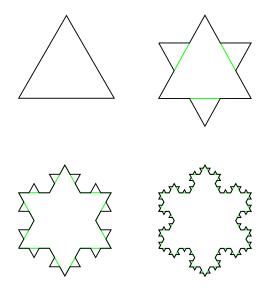
Определение 2. Множеств X называется счетным, если существует биекция со множеством натуральных чисел.

Задача 4. (*2) Докажите, что множество C не является счетным. (Подсказка: вспомните, как доказывалось, что множество вещественных чисел несчетно.)

Задача 5. Ковер Серпинского строится аналогично множеству Кантора, только начинаем с единичного квадрата $S_0 = [0,1] \times [0,1]$. На очередном шаге делим каждый входящий квадрат на 9 равных квадратов и выбрасываем средний квадрат без границы.

- (a) (1) Постройте S_1 , S_2 . Сформулируйте определение аналогично множеству Кантора и введите объект аналогичный G_n .
- (b) (1) Найдите площадь ковра Серпинского.
- (c) (1) Как по троичной записи координат (x,y), $x,y \in [0,1]$ понять принадлежит ли точка ковру Серпинского или нет?

Задача 6. Снежинка Коха строится следующим образом: начинаем с равностороннего треугольника со стороной 1, на очередном шаге каждый отрезок, входящий в кривую, делим на три равные части и заменяем средний интервал на равностронний треугольник без этого сегмента (см рисунок). Повторяем это бесконечно много раз.



Puc. 1: Построение снежинки Koxa, рисунок: Wxs / Wikimedia Commons | CC BYSA 3.0

- (а) (1) Найти периметр снежинки Коха.
- (b) (1) Найти площадь фигуры, ограниченной снежинкой Коха.

(c) (1) Аналгично снежинке Коха построим кривую, в которой треугольники на средней трети отрезков строятся не «наружу», а «внутрь». Постройте три первых приближения к такой антиснежинке Коха и найдите площадь фигуры, ей ограниченной.

Определение 3. Выберем разбиение отрезка [a, b]:

$$a < x_1 < x_2 < \dots < x_{n-1} < x_n < b.$$

Построим ломаную по заданной функции f(x), последовательно соединяющую точки $(a, f(a)), (x_1, f(x_1)) \dots (b, f(b))$. Длина кривой, заданной f(x), от a до b — точная верхняя грань длин таких ломаных.

Задача 7. Лестница Кантора (Devil's staircase) — это кривая, которая строится следующим образом. Рассмотрим последовательность фигур: $S_0 = [0,1] \times [0,1]$ — единичный квадрат, а для построения S_{n+1} нужно каждый из прямоугольников, входящих в S_n , разбить на шесть равных прямоугольников двумя вертикальными и одной горизонтальной прямой, после чего заменить этот прямоугольник на объединение левой нижней и правой верхней частей, а также отрезка проведенной горизонтальной прямой между двумя вертикальными. Например,

$$S_1 = ([0, 1/3] \times [0, 1/2]) \cup ([1/3, 2/3] \times \{1/2\}) \cup ([2/3, 1] \times [1/2, 1])$$
.

Тогда лестница Кантора — это $S=\cap_{n=0}^{\infty}S_n$.

- (a) (0,5) Докажите, что множество S является графиком некоторой функции y=s(x) (то есть прямая x=k при $k\in[0,1]$ пересекает S ровно в одной точке).
- (b) (0,5) Покажите, что функция s(x) неубывающая.
- (c) (1) Докажите, что y = s(x) непрерывная функция.
- (d) (2) Объясните, как по троичной записи x построить y = s(x).
- (e) (1) Посчитайте длину ломаной с вершинами в точках $(x_k, s(x_k))$, где $x_k = \frac{k}{3^n}$.
- (f) (1) Докажите, что длина кривой S не больше 2. (Подсказка: пусть есть какаято ломаная, вписаная в S, рассмотрите проекции ее звена на оси координат, вспомните теорему Пифагора и воспользуйтесь монотонностью.)
- (g) (1) Докажите, что длина кривой S равна 2.