Совместный бакалавриат ВШЭ-РЭШ, 2020-21 уч. год Математический анализ 1 (http://math-info.hse.ru/s20/3)

Семинар 25 (4 декабря 2020)

И. Щуров, В. Болбачан, А. Дунайкин, Д. Леонкин, А. Трофимова, И. Эрлих

Некоторые задачи основаны на учебнике Stewart J. Calculus, Early Transcedentals.

Задача 1. Найти определенные интегралы

(a)
$$(\widehat{\mathbf{n}}) \int_0^2 (x-1)^{25} dx$$
 (d) $(\widehat{\mathbf{n}}) \int_1^2 \frac{e^{1/x}}{x^2} dx$ (b) $\int_0^1 x^2 (1+2x^3)^5 dx$ (e) $\int_1^2 x \sqrt{x-1} dx$ (f) $(\widehat{\mathbf{n}}) \int_e^{e^4} \frac{dx}{x\sqrt{\ln x}}$

Задача 2. Найти интеграл с помощью интегрирования по частям и других методов

(a)
$$\int x^{2} \sin \pi x \, dx$$
(b) (a)
$$\int \ln(2x+1) \, dx$$
(c)
$$\int_{1}^{2} \frac{\ln x}{x^{2}} \, dx$$
(d) (a)
$$\int_{0}^{\pi} x^{3} \cos x \, dx$$
(e) (b)
$$\int_{0}^{1} (x^{2}+1)e^{-x} \, dx$$
(f)
$$\int_{1}^{2} x^{4} (\ln x)^{2} \, dx$$
(g)
$$\int \cos \sqrt{x} \, dx$$
(h) (c)
$$\int x \ln(1+x) \, dx$$
(i)
$$\int_{1/e}^{e} |\ln x| \, dx$$
(j)
$$\int e^{x} \sin x \, dx$$

Задача 3. Докажите, что для положительных a, b, верно равенство

$$\int_0^1 x^a (1-x)^b dx = \int_0^1 x^b (1-x)^a dx.$$

Задача 4. Функция f называется nepuoduческой, если существует такое T>0, что f(x+T)=f(x) для всех $x\in\mathbb{R}$. Докажите, что

$$\int_{a}^{a+T} f(x) dx = \int_{b}^{b+T} f(x) dx$$

для любых a, b. (Иными словами, интеграл от периодической функции по периоду не зависит от выбора отрезка интегрирования.)

Задача 5. (क) Пусть функция f периодическая и $\int_a^{a+T} f(x) \, dx = 0$. Докажите, что $\int f(x) \, dx$ — периодическая функция.

Задача 6. (क) Пусть функция f периодическая и интегрируемая. Докажите, что $\int f(x) dx$ представляется в виде суммы периодической и линейной функции.

Задача 7. Рассмотрим интеграл

$$\int_0^1 \sqrt{1-x^2} dx.$$

- (a) Найти его значение с помощью замены $x = \sin t$.
- (b) Можно ли при этой замене в качестве новых пределов интегрирования взять числа π (нижний) и $\pi/2$ (верхний). Почему?

Задача 8. Найти интеграл

(a)
$$\int \frac{x^2}{x+4} dx$$
 (d) $\int \frac{dx}{(x-1)(x^2+9)}$ (b) $\int \frac{dt}{(t+4)(t-1)}$ (e) $\int \frac{dx}{x(x^2+4)^2}$ (f) $\int_0^1 \frac{x dx}{x^2+4x+13}$