Совместный бакалавриат ВШЭ-РЭШ, 2020-21 уч. год Математический анализ 1 (http://math-info.hse.ru/s20/3)

Семинар 22 (25 ноября 2020)

И. Щуров, В. Болбачан, А. Дунайкин, Д. Леонкин, А. Трофимова, И. Эрлих

Задача 1. Про функцию f известно, что она n раз дифференцируема в точке x_0 и

$$f^{(k)}(x_0) = 0, \quad k = 1, \dots, n - 1,$$

 $f^{(n)}(x_0) = 42,$

где $f^{(i)}$ — i-я производная функции f. Пусть

- (a) n = 2020,
- (b) n = 2021.

Может ли точка x_0 быть точкой максимума функции f? Точкой минимума? Не быть ни тем, ни другим? Ответ обосновать.

Теорема 1 (Формула Тейлора с остаточным членом в форме Лагранжа). Пусть функция f имеет n непрерывных производных на отрезке [a,b] и (n+1) производную на интервале (a,b). Тогда существует такое $c \in (a,b)$, что

$$f(b) = \sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!} (b-a)^{k} + \frac{f^{(n+1)}(c)}{(n+1)!} (b-a)^{n+1}.$$

Задача 2. С помощью формулы Тейлора с остаточным членом в форме Лагранжа вычислите без использования компьютера

- (a) cos 1 с точностью до сотых;
- (b) $\ln(3/2)$ с точностью до сотых;
- (c) $e^{1/4}$ с точностью до тысячных

и докажите оценку на погрешность.

Задача 3. Разложите в ряд Тейлора в точке $x_0 = 0$ функции

(a)
$$\sin x$$
; (b) $\cos x$; (c) e^x

и докажите, что ряд сходится к соответствующей функции всюду.

Замечание 1. Ряд Тейлора в точке $x_0 = 0$ также называется рядом Маклорена.

Задача 4. Разложите в ряд Тейлора в точке $x_0 = 1$ функцию $\ln x$ и докажите, что

- (a) ряд Тейлора сходится к этой функции на интервале (1/2, 2);
- (b) ряд Тейлора расходится при x < 0 и x > 2.

Задача 5. Разложите в ряд Тейлора функцию $\frac{1}{1-x}$ в точке $x_0=0$. При каких значениях x ряд Тейлора сходится к породившей её функции?

Замечание 2. Кстати, если разложить функцию $\ln(1-x)$ в ряд в нуле и продифференцировать все члены этого ряда, получится ряд для $-\frac{1}{1-x}$.