Совместный бакалавриат ВШЭ-РЭШ, 2018-19 уч. год

Математический анализ 1 (http://math-info.hse.ru/s18/i)

Семинар 5 (4 октября 2018)

И. Щуров, М. Матушко, И. Машанова, И. Эрлих

Определение 1. Обозначим число способов выбрать k различных элементов из множества, содержащего n различных элементов, через C_n^k . Оно называется биноми*альным коэффициентом*. Также часто обозначается через $\binom{n}{k}$ (здесь нет опечатки при таком обозначении n пишется сверху, а k снизу).

На лекции было показано, что

$$C_n^k = \frac{n!}{k!(n-k)!}.$$

Для целых $n,\ k$ обычно по определению полагают, что $C_n^k=0$ при k<0 или k > n.

Задача 1. Докажите тождества, пользуясь комбинаторными соображениями:

- (a) $C_n^k = C_n^{n-k}$ (b) $C_{n+1}^k = C_n^{k-1} + C_n^k$

(c)
$$\sum_{k=0}^{n} C_n^k = 2^n$$

Задача 2. Докажите формулу бинома Ньютона:

$$(a+b)^n = \sum_{k=0}^n a^k b^{n-k} C_n^k.$$

Задача 3. Докажите, что для любого натурального n > 2,

(a)
$$\sum_{k=1}^{n} \frac{1}{k!} < 2;$$
 (b) $2 < \left(1 + \frac{1}{n}\right)^n < 3.$

Задача 4. Пусть $a_n = \left(1 + \frac{1}{n}\right)^n$. Докажите, что

- (a) $a_{n+1} > a_n$ для всех n. (b) Существует предел $\lim_{n \to \infty} a_n$.

Определение 2. Предел

$$\lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n$$

обозначается буквой е. Мы показали, что е существует и находится на интервале (2,3). На самом деле, e — ирациональное число, десятичная запись которого начинается с 2,718281828...

Задача 5. Буратино положил 1000 рублей на банковский счёт под 100% годовых. Проценты по счёту начисляются через равные промежутки времени n раз в год. Например, если n=1, то проценты будут начислены один раз в конце года, если n=2, то два раза — в середине и конце года (каждый раз будет начислено 0.5%) и т.д. Проценты начисляются с капитализацией (например, если n=2, то в конце первого полугодия будут начислены проценты на исходную сумму, а в конце второго — на сумму, которая получилась в конце первого полугодия после начисления процентов). Сколько денег будет у Буратино в конце года в зависимости от n? Как ведёт себя эта величина при $n\to\infty$? (Это называется непрерывное начисление процентов.)

(Решение этой задачи и привело к открытию числа e.)

Задача 6. Найти

$$\lim_{n\to\infty}\left(1-\frac{1}{n}\right)^n$$

Задача 7. Найти

$$\lim_{n \to \infty} \left(1 + \frac{m}{n} \right)^n$$

для любого целого m.

Задача 8. Положим по определению:

$$\exp a = \lim_{n \to \infty} \left(1 + \frac{a}{n} \right)^n.$$

Докажите, что $\exp a$ существует для всех вещественных a.

Задача 9. Докажите, что

$$e = \sum_{n=0}^{\infty} \frac{1}{n!}.$$

(Напомним, что 0! = 1 по определению.)

Задача 10. Докажите, что

$$\exp a = \sum_{n=0}^{\infty} \frac{a^n}{n!}.$$

Задача 11. Докажите, что для любых вещественных a, b:

$$\exp(a+b) = \exp a \cdot \exp b.$$