Факультет компьютерных наук, 2018/19 уч. год

Дифференциальные уравнения (http://math-info.hse.ru/s18/t)

Семинар 9. Замены координат (12.03/15.03)

И. В. Щуров, А. А. Айзенберг, И. С. Шилин, М. И. Ронжина

Задача 1. Для уравнения $(\dot{x}, \dot{y}) = w(x, y)$ найти замену координат (u, v), приводящую его к виду

$$\dot{u} = 1, \quad \dot{v} = 0$$

вблизи данной точки P:

(a)
$$w = (1,2), P = (0,0);$$

(b) $w = (x,2y), P = (0,1);$
(c) $w = (2x,-y), P = (-2,0).$

Задача 2. Для следующих систем осуществить переход к полярным координатам, то есть записать уравнения для новых координат φ и r, где $x = r \cos \varphi$, $y = r \sin \varphi$.

Построить фазовые портреты в новых и старых координатах.

$$\begin{array}{lll} \text{(a)} & \dot{x} = -y, & \dot{y} = x;\\ \text{(b)} & \dot{x} = y, & \dot{y} = -x;\\ \text{(c)} & \dot{x} = x - y, & \dot{y} = x + y;\\ \text{(d)} & \dot{x} = -x - y, & \dot{y} = x - y; \end{array}$$

$$\begin{array}{ll} \text{(e)} & \dot{x} = x + y, & \dot{y} = -x + y;\\ \\ \dot{x} = y + x(1 - x^2 - y^2);\\ \dot{y} = -x + y(1 - x^2 - y^2). \end{array}$$

Задача 3. Для следующих систем найти какой-нибудь глобальный непостоянный непрерывный первый интеграл, либо доказать, что его не существует.

(a)
$$\dot{x} = \sin(x+y)$$
, $\dot{y} = \cos(x+y+z)$, $\dot{z} = 0$;
(b) $\dot{x} = -y$, $\dot{y} = x$, $\dot{z} = \sin(x^2+y^2+z^2)$;

(b)
$$\dot{x} = -y$$
, $\dot{y} = x$, $\dot{z} = \sin(x^2 + y^2 + z^2)$

(c)
$$\dot{x} = x$$
, $\dot{y} = 2y$, $\dot{z} = -3z$;

(d)
$$\dot{x} = x$$
, $\dot{y} = 2y$, $\dot{z} = 3z$.

Задача 4. Найти все периодические решения системы уравнений.

$$\dot{x} = y, \quad \dot{y} = -x, \quad \dot{z} = -z.$$

Задача 5. Найти фазовые кривые системы уравнений.

(a)
$$\dot{x} = x^2$$
, $\dot{y} = y(x+y)$:

(a)
$$\dot{x} = x^2$$
, $\dot{y} = y(x+y)$;
(b) $\dot{x} = y^2 + 2y + 1$, $\dot{y} = x^2 - 1$;

(c)
$$\dot{x} = 2y\cos^2 x$$
, $\dot{y} = 1 + y^2\sin 2x$;

(d)
$$\dot{x} = -y + 2x$$
, $\dot{y} = x + 2y$.