Совместный бакалавриат ВШЭ-РЭШ, 2016/17 уч. год Дифференциальные уравнения (http://math-info.hse.ru/s16/f) Семинар 17. Структурная устойчивость (2.06.2017) И. В. Шуров, Н. А. Солодовников

Задача 1. Рассмотрим семейство

$$\begin{cases} \dot{x} = \varepsilon x + y + cx(x^2 + y^2) \\ \dot{y} = -x + \varepsilon y + cy(x^2 + y^2) \end{cases}$$
 (1)

Построить фазовые портреты при $\varepsilon > 0$, $\varepsilon = 0$, $\varepsilon < 0$ при c > 0 и c < 0.

Определение 1. Дифференциальные уравнения $\dot{x} = v(x)$ и $\dot{y} = w(y)$ называются *орбитально топологически эквивалентными* если существует такая непрерывная замена координат, которая переводит фазовые кривые одного уравнения в фазовые кривые другого уравнения с сохранением направления движения.

Задача 2. Доказать, что уравнения $\dot{x} = x^2 - 1$ и $\dot{y} = y^2 - 4$ орбитально топологически эквивалентны. Фазовое пространство считать отрезком [-10, 10].

Задача 3. Являются ли орбитально топологически эквивалентными уравнения $\dot{x} = x + x^3$ и $\dot{x} = x - x^3$? Фазовое пространство считать отрезком [-10, 10].

Задача 4. Найти замену координат, которая переводит фазовый портрет уравнения

$$\dot{x} = -x + y \quad \dot{y} = -x - y \tag{2}$$

в фазовый портрет уравнения

$$\dot{x} = -x \quad \dot{y} = -y. \tag{3}$$

Определение 2. Дифференциальное уравнение $\dot{x}=v(x)$ называется cmpy kmypho устойчивым, если оно орбитально топологически эквивалентно своему C^1 -малому возмущению. Иными словами, существует такое $\varepsilon_0>0$, что для всякого w, такого, что $\|w(x)\|<\varepsilon_0$ и $\|\partial w/\partial x\|<\varepsilon_0$, дифференциальное уравнение $\dot{x}=v(x)+w(x)$ орбитально топологически эквивалентно исходному уравнению.

Задача 5. Доказать, пользуясь определением, что уравнение $\dot{x}=x^3$ не является структурно устойчивым.