Совместный бакалавриат ВШЭ-РЭШ, 2015/16 уч. год

Динамические системы (http://math-info.hse.ru/s15/f)

Отображение удвоения и символическая динамика (11 сентября 2015) $H.\ B.\ III_{ypob}$

Листок частично основан на материалах просеминара «Динамические системы» на мехмате МГУ за 2012-13 учебный год (В. А. Клепцын, И. В. Щуров и др.)

Определение 1. Омега-предельным множеством $\omega_f(x_0)$ точки x_0 под действием отображения $f\colon X\to X$ называется множество всех предельных точек последовательности $\{f^n(x_0)\}_{n=0}^\infty$. Формально:

$$\omega_f(x_0) = \{ y \in X \mid \exists \{n_k\}_{k=1}^{\infty}, \ n_k \to \infty, \ f^{n_k}(x_0) \to y \}$$

Задача 1. Найти омега-предельное множество предпериодической точки.

Пусть задано отображение $f: X \to X$. Пусть множество X разбито на n непересекающихся частей: $X = A_0 \bigcup A_1 \bigcup \ldots \bigcup A_{n-1}$. Каждой точке $x \in X$ сопоставим ее $cy\partial b \delta y$ — последовательность $\{\omega_i\}$:

Если
$$f^s(x) \in A_k$$
, положим $\omega_s = k$.

Если f обратимо, то мы рассматриваем и отрицательные s; тогда последовательность $\{\omega_i\}$ бесконечна в обе стороны.

Множество бесконечных вправо последовательностей из чисел $0, \ldots, (n-1)$ будем обозначать через Σ_n^+ , а бесконечных в обе стороны через Σ_n .

Задача 2. Как связаны судьбы точек x и f(x)? x и $f^k(x)$?

Рассмотрим отображение удвоения $T_2\colon x\mapsto 2x\pmod 1$ и разобьём окружность на две части: $A_0=[0,\frac12)$ и $A_1=[\frac12,1).$

Задача 3. Для отображения T_2 и разбиения $S^1 = A_0 \cup A_1$, найдите

- (a) судьбу точки $\frac{3}{5}$;
- (b) точку с судьбой 1010101010... (последовательность периодическая). Подсказка: рассмотреть последовательно множества точек с судьбами, начинающимися с 1, 10, 101, 1010 и т.д.

Задача 4. Укажите на окружности точки, в судьбе которых $\omega_2 = 0, \, \omega_4 = 1.$

Задача 5. Пусть у точек x и y судьбы совпадают в первых n символах. Что вы можете сказать про расстояние между точками x и y?

Задача 6. (а) При каком условии на судьбу точка не принадлежит дуге $\left[\frac{5}{8}, \frac{3}{4}\right]$? (b) При каком условии на судьбу точка никогда не попадет в дугу $\left[\frac{5}{8}, \frac{3}{4}\right]$?

Задача 7. Рассмотрим множество точек, в судьбе которых $\omega_{i_1} = \alpha_1, \ldots, \omega_{i_k} = \alpha_k$, где $\alpha_1, \ldots, \alpha_k \in \{0, 1\}, i_1, \ldots i_k$ — различные номера позиций в судьбе. Какова суммарная длина дуг, объединением которых является это множество?

И. В. Щуров

Задача 8. (а) Докажите, что у различных точек разные судьбы.

- (b) Как по судьбе вычислить координату точки?
- (c) Всякой ли последовательности из Σ_2^+ соответствует точка окружности?

Задача 9. Опишите множество судеб (пред)периодических орбит периода n. Докажите, что (пред)периодические точки всюду плотны на окружности.

Задача 10. Найдите точку, омега-предельное множество которой под действием T_2 включает в себя точку 0, но ни одна точка орбиты не является точкой 0.

Задача 11. Найдите точку со всюду плотной орбитой под действием T_2 .

Задача 12. (*) Найдите точку, омега-предельное множество которого под действием T_2 включает в себя точки 0 и 1/2, но не совпадает со всей окружностью.

Задача 13. (*) Найдите точку, омега-предельное множество которого под действием T_2 включает в себя 0, 1/3 и 2/3, но не совпадает со всей окружностью.

Задача 14. (*) Рассмотрим отображение окружности, действующее следующим образом:

$$f(x) = \begin{cases} 3x, & x \in [0, 1/3) \\ 3x/2 - 1/2, & x \in [1/3, 1) \end{cases}$$

Доказать, что у него существует точка со всюду плотной орбитой.

Задача 15. (*) Рассмотрим множество B всех точек [0,1), двоичное представление которых не содержит двух последовательных нулей. Докажите, что

- (a) множество B является замкнутым и нигде не плотным (то есть в любом открытом интервале найдётся меньший интервал, не пересекающийся с B);
- (b) Множество B инвариантно под действием T_2 , то есть $T_2B = B$ (здесь точки на [0,1) отождествляются с точками на S^1 естественным образом);
- (c) Докажите, что существует точка окружности, омега-предельное множество которой совпадает с B.

Задача 16. (*) Рассмотрим отображение утроения $T_3(x) = 3x \pmod 1$. Пусть K — множество точек окружности, никогда не попадающих в дугу (1/3,2/3). Докажите, что множество K

- (а) является замкнутым;
- (b) является нигде не плотным;
- (c) можно накрыть конечным числом отрезков сколь угодно малой суммарной длины (из этого следует, что мера множества K равна нулю);
- (d) содержит континуум точек (то есть существует взаимно однозначное отображение, переводящее K в отрезок [0,1]).

И. В. Щуров