Совместный бакалавриат ВШЭ—РЭШ, 2015/16 уч. год Динамические системы (http://math-info.hse.ru/s15/f) Основные понятия (4 сентября 2015) И. В. Шуров

Листок частично основан на материалах просеминара «Динамические системы» на мехмате МГУ за 2012-13 учебный год (В. А. Клепцын, И. В. Щуров и др.)

Определение 1. Рассмотрим какое-то множество X и отображение $f: X \to X$. Пара (X, f) называется динамической системой. (В дальнейшем на f и X будут накладываться различные предположения — скажем, о непрерывности для f, компактности для X и т.д., но пока мы этого делать не будем.)

Определение 2. Возьмём какую-нибудь точку x_0 и рассмотрим её последовательные umepauuu под действием отображения f, то есть последовательность точек x_0 , $f(x_0)$, $f(f(x_0)) =: f^2(x_0)$, $f(f(f(x_0))) =: f^3(x_0)$ и т.д. (Здесь и далее верхние индексы обозначают композиционную, а не алгебраическую степень отображения.) Она называется (nonoжumenьнoù) орбитой точки x_0 . Формально:

$$\operatorname{orb}_f^+(x_0) := \{ f^n(x_0) \mid n \in \mathbb{Z}^+ \}.$$

Определение 3. Динамическая система (X, f) называется *обратимой*, если f биективно отображает X на себя. Говорят, что система (X, f^{-1}) получается *обращением* времени в системе (X, f).

Определение 4. Если динамическая система (X, f) обратима, для любой точки $x_0 \in X$ определена её *полная орбита*:

$$\operatorname{orb}_f(x_0) := \{ f^n(x_0) \mid n \in \mathbb{Z} \}.$$

Определение 5. Точка x_0 называется неподвиженой для отображения f, если $f(x_0) = x_0$. Точка x_0 называется периодической с периодом q, если она является неподвижной для q-й итерации отображения, то есть $f^q(x_0) = x_0$. Минимальный период точки x_0 — это минимальное натуральное число, являющееся её периодом.

Задача 1. Пусть X = [0,1] и функция $f \colon X \to X$ задана графиком (см. рис. 1).

- (a) Построить на графике первые 4 образа точки x_0 под действием отображения f;
- (b) Построить на графике первые 4 образа точки x_0 под действием отображения f^{-1} ;
- (c) Найти все неподвижные точки отображения f.
- (d) Найти все периодические точки отображения f.

Задача 2. Доказать, что если точка x_0 имеет минимальный период q, то её орбита состоит ровно из q различных точек.

Задача 3. Пусть отображение f имеет периодическую точку x_0 минимального периода n. Рассмотрим отображение $g = f^2$. Будет ли точка x_0 периодической для g? Если да, то с каким минимальным периодом?

И. В. Щуров

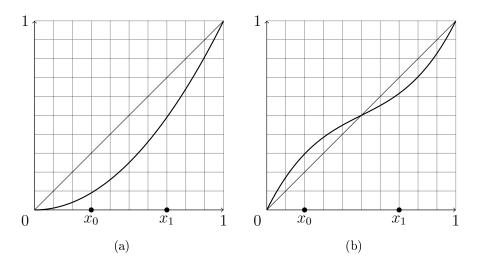


Рис. 1: Рисунок к задаче 1

Задача 4. Пусть X=[0,1] и $f\colon X\to X$ — некоторое непрерывное отображение. Доказать, что

- (a) у отображения f есть хотя бы одна неподвижная точка;
- (b) если отображение f задано монотонно возрастающей функцией, то оно не имеет других периодических точек, кроме неподвижных;
- (c) если отображение f задано монотонно убывающей функцией, то все его периодические точки имеют минимальный период не больше двух.

Определение 6. Пусть $X = S^1 = \mathbb{R}/\mathbb{Z}$ — окружность единичной длины. Координате $x \in \mathbb{R}$ соответствует точка на окружности с углом $\varphi = 2\pi x$. (Как будет видно из дальнейшего, такая параметризация удобнее, чем стандартная.) Определим отображение nosopoma на угол¹ α :

$$R_{\alpha}(x) = x + \alpha \pmod{1}$$
.

Задача 5. Рассмотрим отображение R_{α} для иррационального $\alpha \notin \mathbb{Q}$. Пусть x_0 — некоторая точка окружности S^1 и $x_n = R_{\alpha}^n(x_0)$ для всех натуральных n.

- (a) Доказать, что для всякого $\varepsilon > 0$ среди точек $\{x_n\}_{n=1}^{\infty}$ найдутся две такие точки x_k и x_l , что расстоение между ними будет меньше ε . Подсказка: 1) разбить окружность на дуги длины меньше ε ; 2) затаиться и ждать подходящего момента.
- (b) Доказать, что для всякой дуги $U_{2\varepsilon}$ длины 2ε найдётся точка x_k , лежащая в $U_{2\varepsilon}$. Иными словами, доказать, что орбита orb x_0 плотна в S^1 .

Определение 7. Пусть снова $X = S^1$ — окружность единичной длины. Определим отображение ydeoenun:

$$T_2(x) = 2x \pmod{1}$$

И. В. Щуров

 $^{^{1}}$ «угол» в данном случае также измеряется не в радианах, а в радианах, деленных на 2π

Задача 6. Пусть $X = S^1$, $f = T_2$. Для динамической системы (X, f) найти

- (а) все неподвижные точки;
- (b) все периодические точки минимального периода 2;
- (с) все периодические точки минимального периода 3;
- (d) все периодические точки периода 4;
- (е) все периодические точки минимального периода 4;
- (f) все периодические точки периода $n \in \mathbb{N}$.

Определение 8. Точка x_0 называется предпериодической точкой отображения f, если найдётся такое натуральное n, что $f^n(x_0)$ — периодическая точка отображения f. Минимальное такое n называется длиной предпериода.

Задача 7. Доказать, что если динамическая система обратима, то её предпериодические точки являются периодическими. Иными словами, длина предпериода всегда равна нулю.

Задача 8. Найти все предпериодические орбиты для отображения удвоения угла. Какие из них являются периодическими? (Ответ необходимо дать в таком виде, чтобы по точке можно было сходу сказать, является ли она (пред)периодической.) Доказать, что периодические точки для отображения удвоения плотны в S^1 .

Задача 9. Реализовать отображение удвоения на любом языке программирования. Выбрать случайную точку на окружности и найти первые 100 элементов её орбиты. Объяснить результат.

И. В. Щуров