Совместный бакалавриат ВШЭ-РЭШ, 2015/16 Математический анализ 1

Семинар 9: Производная-2. (12-13 ноября 2015 года)

Б. С. Бычков, Н. Б. Гончарук, Д. А. Дагаев, Н. Е. Сахарова

Задача 1. Найдите производные следующих функций:

(a) $\log_5 x$;

(f) $\ln f(x)$, если производная f(x) известна;

(b) $\frac{\sin 2x + 3}{\sin 2x - 3}$;

(g) e^{x^2} :

(c) $\sin \sqrt[3]{1+x^2}$;

(h) $e^{4\ln x}$;

(d) $\operatorname{arctg}(\sqrt{|2x|})$;

(i) x^x ;

(e) $e^{f(x)}$, если производная f(x) извест-

(j) $(\log_3 x)^{x^2+3}$; (k) $x^{x^x} = x^{(x^x)}$.

Задача 2. Найдите приближенно с точностью до сотых:

- (a) $\sin 0.01$;
- (b) $\sin 1.58$.

С какой точностью можно найти $(2.01)^7$?

Задача 3. Найдите локальные и глобальные максимумы и минимумы, промежутки монотонности, точки перегиба, асимптоты для следующих функций. Нарисуйте эскизы графиков.

- (a) $f(x) = 2 + \frac{1}{x^2 + 2x + 2}$; (b) $f(x) = \frac{x^2}{x + 2}$; (c) $f(x) = e^{x x^2}$; (d) $f(x) = \ln x + \frac{x^2}{2} 6x$;

Задача 4. Дана парабола – график функции $y=x^2$. Выясните, из каких точек плоскости к ней можно провести:

- (а) Одну касательную?
- (b) Две касательных?
- (с) Ни одной касательной?

Задача 5. Радиоуправляемая машинка должна доехать от точки старта до финиша, расположенного на расстоянии 8 метров. Машинка может двигаться с ускорением 2 M/c^2 или -2 M/c^2 . Как нужно управлять машинкой, чтобы она приехала на финиш как можно скорее (начальное положение – машинка старте, в точке финиша она должна остановиться)? Нарисуйте график её скорости и перемещения.